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Space-time random function

Let Z(x, t) with (x,t) € RY x R be a space-time random function.

o Physically we have a clear-cut separation
between the spatial and time dimensions.



Assumptions about space-time covariance functions

Common simplifying assumptions about the space-time covariance:
Separability:

COV(Z(Xl, tl), Z(Xz, tg)) = Cs(Xl, X2) . CT(tl, t2)

Full symmetry:
COV(Z(Xl, t'l)7 Z(X27 tz)) = COV(Z(X17 t2), Z(X27 tl))

Stationarity (translation invariance):

COV(Z(Xl, tl), Z(Xg, tg)) = C(Xl — Xo, 1 — tz)



Imbrication of the assumptions

General class of space—time covariance functions

separable

From Gneiting, Genton & Guttorp (2007)



Three classes of covariance functions in R¢

Class Functions Parameters

Stable C(h) = b exp(—(6h)") b,6>0;0<p<2
Whittle-Matérn (Bessel) C(h) = 1(]/) (9 h) K, (9 h) b, 0, v >0

Cauchy C(h) = (1 ( ) )71/ b,0,v>00<p<2

o Physically, the spatial and the time dimensions

clearly play a distinct role,
which should be reflected in the statistical model.




Gneiting’s stationary space-time covariance
functions

A continuous function ¢(r) with r > 0 is said to be completely monotone, if it possesses derivatives Lp(") of
all orders and (—1)" (" (r) > 0forr >0and n=0,1,2,...

Theorem

Suppose that ¢(r), r > 0, is a completely monotone function and that (r),
r > 0, is a positive function with a completely monotone derivative. Then

1 h?
C(h,u) = w(w?)az ¢ <¢|(U2))

is a stationary covariance function on R? x R.




Gneiting’s stationary space-time covariance
functions

Example

The specific choices p(r) = b exp(—ay r?) and (r) = (1 + a, r*)” yield the
parametric family of stationary space-time covariance functions

C(h,u) = b exp (_("’1"">

(14 apfufP)P e/ 1+ apfuf?)P”

with smoothess parameters «, v and
the space-time interaction parameter S taking values in (0, 1].

o The purely spatial covariance function C(h, 0) is of
the stable covariance function class,

o the purely temporal covariance function C(0, v) belongs to
the Cauchy class.



Frozen field model: non-symmetric covariance

@ Geophysical processes often influenced by prevailing winds or ocean
currents

o Idea of Lagrangian reference frame (moving with air or water mass)

Consider a spatial covariance Cs and a random velocity vector V € R:
C(h,u) = E[Cs(h — Vu]

With prevailing winds we may consider a constant velocity vector v and
the model is called the frozen field model.



Taylor’s hypothesis

A stationary space-time covariance function C on R? x R satistifies
Taylor’s hypothesis, if there exists a velocity vector v € R? such that

C(0,u) = C(vu,0), ueR

o The covariance function of the frozen field model C(h, u) = Cs(h — vu)
satisties Taylor’s hypothesis.



Irish wind case study

Gneiting, Genton & Guttorp (2007)

@ Winds in Ireland are predominantly westerly, so that the velocity measures propagate
from west to east.

@ Temporal correlations lead or lag between W and E stations at a daily scale.

@ Exploratory analysis shows a lack of full symmetry and thereby of separability in the
correlation structure of the velocities.

@ Fitting different parametric models: separable, fully symetric but not separable,
stationary but not fully symmetric.

@ Space-time simple kriging results show the best performance with the general
stationary model in terms of four different performance measures.



Irish wind speed (daily, 1961-1978)

Haslett & Raftery (1989, with discussion)

Malin Head <~ U(

The correlation circle (PCA) reproduces the relative locations of stations
on the geographical map.



Irish wind speed: cross-covariance functions
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Asymmetric cross-covariances between E and W coastal stations.
The lagged correlation is about 6 hours.




Modelling a covariance function matrix with

asymmetric cross-covariance functions
Li & Zhang (2011)

A simple and general approach to modelling asymmetric covariance
functions for h € R is to introduce variable-specific vectors a; and to use
them to shift symmetric cross-covariance functions Cj(h):

Cj(h) = CU(h +a; — aj)

thereby obtaining asymmetric cross-covariance functions C3(h).



Perspectives: taper covariance models for

multivariate localization
Roh et al (2015); Bevilacqua et al (2016)

@ Univariate localization applied directly to multiple state variables
may cause rank deficiency problems.

o Particular multivariate covariance functions can be used for
multivariate tapering to replace the univariate tapering usually
performed with Gaspari-Cohn functions.

o EnKF analysis can be improved at locations where some state
variables are unobserved, when dealing more adequately with the
cross-covariances through the multivariate tapering functions.
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