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Space-time random function

Let Z (x, t) with (x, t) ∈ Rd × R be a space-time random function.

Physically we have a clear-cut separation
between the spatial and time dimensions.



Assumptions about space-time covariance functions

Common simplifying assumptions about the space-time covariance:

Separability:
cov(Z (x1, t1),Z (x2, t2)) = CS(x1, x2) · CT (t1, t2)

Full symmetry:
cov(Z (x1, t1),Z (x2, t2)) = cov(Z (x1, t2),Z (x2, t1))

Stationarity (translation invariance):

cov(Z (x1, t1),Z (x2, t2)) = C(x1 − x2, t1 − t2)



Imbrication of the assumptions

fully symmetric

separable

stationary

General class of space−time covariance functions

From Gneiting, Genton & Guttorp (2007)



Three classes of covariance functions in Rd

Class Functions Parameters

Stable C(h) = b exp(−(θ h)p
) b, θ > 0; 0 < p ≤ 2

Whittle-Matérn (Bessel) C(h) = b 21−ν

Γ(ν) (θ h)ν Kν(θ h) b, θ, ν > 0

Cauchy C(h) = b (1 + (θ h)p)−ν b, θ, ν > 0; 0 < p ≤ 2

Physically, the spatial and the time dimensions
clearly play a distinct role,
which should be reflected in the statistical model.



Gneiting’s stationary space-time covariance
functions

A continuous function ϕ(r) with r ≥ 0 is said to be completely monotone, if it possesses derivatives ϕ(n) of
all orders and (−1)n ϕ(n)(r) ≥ 0 for r > 0 and n = 0, 1, 2, . . .

Theorem
Suppose that ϕ(r), r ≥ 0, is a completely monotone function and that ψ(r),
r ≥ 0, is a positive function with a completely monotone derivative. Then

C(h, u) = 1
ψ(u2)d/2 ϕ

(
|h|2
ψ(u2)

)
is a stationary covariance function on Rd × R.



Gneiting’s stationary space-time covariance
functions

Example

The specific choices ϕ(r) = b exp(−a1 rγ) and ψ(r) = (1 + a2 rα)β yield the
parametric family of stationary space-time covariance functions

C(h, u) = b
(1 + a2|u|2α)β d/2 exp

(
− a1|h|2γ
(1 + a2|u|2α)β γ

)
with smoothess parameters α, γ and
the space-time interaction parameter β taking values in (0, 1].

The purely spatial covariance function C(h, 0) is of
the stable covariance function class,

the purely temporal covariance function C(0, u) belongs to
the Cauchy class.



Frozen field model: non-symmetric covariance

Geophysical processes often influenced by prevailing winds or ocean
currents
Idea of Lagrangian reference frame (moving with air or water mass)

Consider a spatial covariance CS and a random velocity vector V ∈ Rd :

C(h, u) = E [CS(h− Vu]

With prevailing winds we may consider a constant velocity vector v and
the model is called the frozen field model.



Taylor’s hypothesis

A stationary space-time covariance function C on Rd × R satistifies
Taylor’s hypothesis, if there exists a velocity vector v ∈ Rd such that

C(0, u) = C(vu, 0), u ∈ R

The covariance function of the frozen field model C(h, u) = CS(h− vu)
satisties Taylor’s hypothesis.



Irish wind case study
Gneiting, Genton & Guttorp (2007)

Winds in Ireland are predominantly westerly, so that the velocity measures propagate
from west to east.

Temporal correlations lead or lag between W and E stations at a daily scale.

Exploratory analysis shows a lack of full symmetry and thereby of separability in the
correlation structure of the velocities.

Fitting different parametric models: separable, fully symetric but not separable,
stationary but not fully symmetric.

Space-time simple kriging results show the best performance with the general
stationary model in terms of four different performance measures.



Irish wind speed (daily, 1961-1978)
Haslett & Raftery (1989, with discussion)
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The correlation circle (PCA) reproduces the relative locations of stations
on the geographical map.



Irish wind speed: cross-covariance functions

Stations: ROS, DUB, MAL, BEL, VAL
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Asymmetric cross-covariances between E and W coastal stations.
The lagged correlation is about 6 hours.



Modelling a covariance function matrix with
asymmetric cross-covariance functions
Li & Zhang (2011)

A simple and general approach to modelling asymmetric covariance
functions for h ∈ Rd is to introduce variable-specific vectors ai and to use
them to shift symmetric cross-covariance functions Cij(h):

C a
ij (h) = Cij(h + ai − aj)

thereby obtaining asymmetric cross-covariance functions C a
ij (h).



Perspectives: taper covariance models for
multivariate localization
Roh et al (2015); Bevilacqua et al (2016)

Univariate localization applied directly to multiple state variables
may cause rank deficiency problems.

Particular multivariate covariance functions can be used for
multivariate tapering to replace the univariate tapering usually
performed with Gaspari-Cohn functions.

EnKF analysis can be improved at locations where some state
variables are unobserved, when dealing more adequately with the
cross-covariances through the multivariate tapering functions.



Acknowledgements

Support for partipating at the EnKF Workshop 2017 has been provided by
the NordForsk EmblA project (2014-2018).



References

BEVILACQUA, M., FASSO, A., GAETAN, C., PORCU, E., AND VELANDIA, D.
Covariance tapering for multivariate Gaussian random fields estimation.
Stat. Methods Appl. 25 (2016), 21–37.

CHILÈS, J. P., AND DELFINER, P.
Geostatistics: Modeling Spatial Uncertainty, 2nd ed.
Wiley, New York, 2012.
(See in particular section 5.8, pp370–385, on Space-Time Models).

GENTON, M. G., AND KLEIBER, W.
Cross-covariance functions for multivariate geostatistics.
Statistical Science 30 (2015), 147–163.

GNEITING, T., GENTON, M. G., AND GUTTORP, P.
Geostatistical space-time models, stationarity, separability and full symmetry.
In Statistics of Spatio-Temporal Systems (2007), B. Finkenstaedt, L. Held, and V. Isham, Eds., CRC Press, pp. 151–175.

HASLETT, J., AND RAFTERY, A. E.
Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource.
J. R. Statist. Soc. B 38 (1989), 1–50.

LI, B., AND ZHANG, H.
An approach to modeling asymmetric multivariate spatial covariance structures.
J. Multivariate Analysis 102 (2011), 1445–1453.

ROH, S., JUN, M., SZUNYOGH, I., AND GENTON, M. G.
Multivariate localization methods for ensemble kalman filtering.
Nonlinear Processes in Geophysics Discussions 2 (2015), 833–863.


	Space-time covariance
	Conclusion

